Course Type	Course Code NMCD527	Name of Course	L	Т	P	Credit
DE		Mathematical Ecology	3	0	0	3

Prerequisite

One should have idea about first order ODEs, PDEs, Existence and Uniqueness of solutions.
 Basics of Matrix theory and Linear Algebra.

Course Objective

Mathematical models are used extensively in many areas of the Biological/Ecological Sciences. This course aims to give an ample knowledge of the constructions/formulations and analysis of such models in Population Ecology/epidemiology.

Learning Outcomes

Upon successful completion of this course, students will:

- have a broad understanding of how to model real life situations for a single population.
- It also provides broad idea about continuous, discrete and delay situations.
- It helps students in understanding the concept of formulating the model of two, three and many interacting populations.
- It helps to understand how to effectively analyze the evolutionary trend of such models and its stability behaviour.
- It helps students in formulating the spatial and spatiotemporal dynamics.
- It gives broad idea about well-known Lotka integral equations and its real applications.

Unit No.	Topics to be Covered	Cont act Hour s	Learning Outcome
1	Single species models, Exponential, logistic, Gompertz growth, Harvest model and Discrete-time model.	8	It provides idea about how to model the real life situations for a single population. It gives broad Idea about continuous, discrete and delay situations.
2	Interacting population model, prey-predator, competition, mutualism models. Model with three and multispecies systems. Kolmogorov Analysis. Equilibria and Stability Analysis, time series analysis.	9	It provides idea of formulating the model of two, three and many interacting populations. How to effectively analyze the evolutionary trend of such models and its stability behaviour.
3	Spatially structured models, Reaction-diffusion systems, Dynamics of exploited populations.	9	It helps students in formulating the spatial and spatiotemporal dynamics. Also in understanding the dynamics of exploited populations.
4	Age-structured models, models of spread, sex- structured models, two sex models, Leslie matrix.	9	It helps to understand the modeling and dynamics of age and sex structured model.
5	The Lokta integral equation, The McKendrick-von Foerster PDE. Gender-Structured Models.	7	It gives broad idea about well-known Lotka integral equations and its real applications
	Total		

Text Books:

- 1. M. Kot, Elements of Mathematical Ecology. Cambridge University Press, 2001.
- 2. J. D. Murray, Mathematical Biology I: An Introduction, Springer-Verlag, 1989.

Reference Books:

- 1. R.K. Upadhyay, S.R. K. Iyengar, Introduction to mathematical modeling and chaotic dynamics. Chapman and Hall/CRC, 2013.
- 2. H. Malchow, S.V. Petrovskii, E. Venturino Spatiotemporal Patterns in Ecology & Epidemiology: Theory, models and Simulation. Chapman and Hall/CRC, 2008.